Frontiers of Network Science Fall 2023

Class 10: Evolving Networks (Chapter 6 in Textbook)

Boleslaw Szymanski

Fitness Model

Fitness Model: Can Latecomers Make It?

SF model: $\quad k(t) \sim t^{1 / 2} \quad$ (first mover advantage)

Fitness model: \quad fitness $(\eta) \quad \Pi\left(k_{i}\right) \cong \frac{\eta_{i} k_{i}}{\sum_{j} \eta_{j} k_{j}}$
$k(\eta, t) \sim t^{\beta(\eta)}$
Pren

$$
\beta(\eta)=\eta / \mathbf{C}
$$

Section 5.3

- The degree of each node increases following a power-law with the same dynamical exponent $\beta=1 / 2$ (Figure 5.6a). Hence all nodes follow the same dynamical law.
- The growth in the degrees is sublinear (i.e. $\beta<1$). This is a consequence of the growing nature of the Barabási-Albert model: Each new node has more nodes to link to than the previous node. Hence, with time the existing nodes compete for links with an increasing pool of other nodes.
- The earlier node i was added, the higher is its degree $k_{i}(t)$. Hence, hubs are large because they arrived earlier, a phenomenon called first-mover advantage in marketing and business.
- The rate at which the node i acquires new links is given by the derivative of (5.7)

$$
\begin{equation*}
\frac{d k_{i}(t)}{d t}=\frac{m}{2} \frac{1}{\sqrt{t_{i} t}}, \tag{5.8}
\end{equation*}
$$

indicating that in each time frame older nodes acquire more links (as they have smaller t_{i}). Furthermore the rate at which a node acquires links decreases with time as $t^{-1 / 2}$. Hence, fewer and fewer links go to a node.

Absence of growth and preferential attachment

MODEL A

growth
 preterentia attacinment

$\Pi\left(k_{i}\right)$: uniform

$\frac{\partial k_{i}}{\partial t}=A \Pi\left(k_{i}\right)=\frac{m}{m_{0}+t-1}$
$k_{i}(t)=m \ln \left(\frac{m_{0}+t-1}{m+t_{i}-1}\right)+m$
$P(k)=\frac{e}{m} \exp \left(-\frac{k}{m}\right) \sim e^{-k}$

MODEL B

grouth preferential attachment

$$
\begin{aligned}
& \frac{\partial k_{i}}{\partial t}=A \Pi\left(k_{i}\right)+\frac{1}{N}=\frac{N}{N-1} \frac{k_{i}}{2 t}+\frac{1}{N} \\
& k_{i}(t)=\frac{2(N-1)}{N(N-2)} t+C t^{\frac{N}{2(N-1)}} \sim \frac{2}{N} t
\end{aligned}
$$

p_{k} : power law (initially) \rightarrow
\rightarrow Gaussian \rightarrow Fully Connected

Do we need both growth and preferential attachment?

YEP

EMPIRICAL DATA FOR REAL NETWORKS

The origins of preferential attachment

Section 9

Link selection model

Link selection model -- perhaps the simplest example of a local or random mechanism capable of generating preferential attachment.
(a) NEW NODE

Growth: at each time step we add a new node to the network.
Link selection: we select a link at random and connect the new node to one of nodes at the two ends of the selected link.

To show that this simple mechanism generates linear preferential attachment, we write the probability that the node at the end of a randomly chosen link has degree k as

$$
q_{k}=C k p_{k}
$$

In (5.26) C can be calculated using the normalization condition $\Sigma q_{k}=1$, obtaining $C=1 /\langle k\rangle$. Hence the probability to find a degree $-k$ node at the end of a randomly chosen link is

$$
\begin{equation*}
q_{k}=\frac{k p_{k}}{\langle k\rangle}, \tag{5.27}
\end{equation*}
$$

Section 9

Originators of preferential attachments

In An Informal Theory of the Statistical
Structure of Languages [26] Benoit
Mandelbrot proposes optimization as the origin of power laws

1953
\square

1955 In On a Class of Skew Distribution Functions Herbert Simon [6] proposes randomness as the origin of power laws and dismisses Mandelbrot's claim that power law are rooted in optimization.

Benoit
n a 19 page response entitled Final Note, Mandelbrot states [29]:

Dr. Mandelbrot's principal and mathematical objections to the model are shown to be unfounded

$$
1960 \times /
$$

Herbert

The essence of Simon's lengthy reply a year later is well summarized in its abstract [28].

n the creatively titled Post Scriptum to Final Note Mandlebrot [31] writes

My criticism has not changed since I first had the privilege of commenting upon a draft of Simon. (2) ㅈ5

1961

Benoit
Dr. Mandelbrot has proposed a new set of objections to my 1955 models of Yule distributions. Like earlier objections, these are invalid.

1961 W

György Pólya PÓLYA PROCESS MATHEMATICIAN

George Kinsley Zipf WEALTH DISTRIBUTION

ECONOMIST

George Udmy Yule YULE PROCESS

STATISTICIAN

Herbert Alexander Simon MASTER EQUATION POLITICAL SCIENTIST POLITICAL SCIENTIST

Albert-László Barabási \& Réka Albert PREFERENTIAL ATTACHMENT NETWORK SCIENTISTS

Robert Gibrat PROPORTIONAL GROWTH

ECONOMIST

Robert Merton MATTHEW EFFECT sOCIOLOGIST

György Pólya (1887-1985)
Preferential attachment made its first appearance in 1923 in the celebrated urn model of the Hungarian mathematician György Pólya [2]. Hence, in mathematics preferential attachment is often called a Pólya process.
-
George Udmy Yule (1871-1951) used preferential attachment to explain the power-law distribution of the number of species per genus of flowering plants [3]. Hence, in statistics preferential attachment is often called a Yule process.

Robert Gibrat (1904-1980) proposed that the size and the growth rate of a firm are independent. Hence, larger firms grow faster [4]. Called proportional growth, this is a form of preferential attachment.

Herbert Alexander Simon (1016-2001) used preferential attachment to explain the fat-tailed nature of the distributions describing city sizes, word frequencies, or the number of papers published by scientists [6].

Robert Merton (1910-2003)
In sociology preferential attachment is often called the Matthew effect, named by Merton [8] after a passage in the Gospel of Matthew.

George Kinsley Zipf (1902-1950) used preferential attachment to explain the fat tailed distribution of wealth in the society [5]

Derek de Solla Price (1922-1983) used preferential attachment to explain the citation statistics of scientific publications, referring to it as cumulative advantage [7].

Barabási (1967) \& Albert (1972) introduce the term preferential attachment in the context of networks [1] to explain the origin of their power-law degree distribution.

MECHANISMS RESPONSIBLE FOR PREFERENTIAL ATTACHMENT

1. Copying mechanism
directed network
select a node and an edge of this node attach to the endpoint of this edge
2. Walking on a network
directed network
the new node connects to a node, then to every
first, second, ... neighbor of this node
3. Attaching to edges
select an edge
attach to both endpoints of this edge
4. Node duplication
duplicate a node with all its edges
randomly prune edges of new node
(a) Random Connection: with probability p the new node links to u.
(b) Copying: with probability p we randomly choose an outgoing link of node u and connect the new node to the selected link's target. Hence the new node "copies" one of the links of an earlier node
(a) the probability of selecting a node is $1 / \mathrm{N}$.
(b) is equivalent with selecting a node linked to a randomly selected link. The probability of selecting a degree-k node through the copying process of step (b) is $k / 2 L$ for undirected networks. The likelihood that the new node will connect to a degree-k node follows preferential attachment

CHOOSE ONE OF THE OUTGOING LINKS OF TARGET

$$
\Pi(k)=p / N+(1-p) k /(2 L)
$$

Preferential Attachment!

$$
\frac{\partial k_{i}}{\partial t} \propto \Pi\left(k_{i}\right) \sim \frac{\Delta k_{i}}{\Delta t} \quad \text { For given } \Delta t: \Delta k \propto \Pi(k)
$$

k vs. Δk : linear increase in the \# of links

S. Cerevisiae PIN: proteins classified into 4 age groups

SUMMARY: PROPERTIES OF THE BA MODEL

- Nr. of nodes: $\quad N=t$
- Nr. of links:

$$
L=m t
$$

-Average degree:
$\langle k\rangle=\frac{2 L}{N} \rightarrow 2 m$
-Degree dynamics
$k_{i}(t)=m\left(\frac{t}{t_{i}}\right)^{\beta} \quad \beta=\frac{1}{2}$
β : dynamical exponent
-Degree distribution: $\quad P(k) \sim k^{-\gamma} \quad \gamma=3 \quad \mathrm{Y}$: degree exponent
-Average Path Length: $\quad l \approx \frac{\ln N}{\ln \ln N}$
-Clustering Coefficient: $\quad C \sim \frac{(\ln N)^{2}}{N}$

The network grows, but the degree distribution is stationary.

DEGREE EXPONENTS

BA model

Can we change the degree exponent?

(a)
(b)
h_{j} denotes the distance of node j to the central node h_{0}
$\mathrm{d}_{\mathrm{j} j}$ denotes the bandwidth between nodes i, j
δ denotes the ratio of cost of cable to delay Question: where to place a new router ?

$$
C_{i}=\min _{j}\left[\delta d_{i j}+h_{j}\right]
$$

(c)
(d)
(e)
(f)

Section 9

Optimization model

$$
C_{i}=\min _{j}\left[\delta d_{i j}+h_{j}\right]
$$

STAR

Star Network

Section 9

Optimization model

$$
C_{i}=\min _{j}\left[\delta d_{i j}+h_{j}\right]
$$

SCALE-FREE

Scale-Free Network

The oblique boundary of the scale-free regime is $\delta=N^{1 / 2}$. Indeed, if nodes are placed randomly on the unit square, then the typical distance between neighbors decreases as $N^{-1 / 2}$. Hence, if $d_{i j} \sim N^{-1 / 2}$ then $\delta d_{i j} \geq h_{i j}$ for most node pairs. Typically the path length to the central node h_{j} grows slower than N (in small-world networks $h \sim \log N)$. Therefore, C_{i} is dominated by the $\delta d_{i j}$ term and the smallest C_{i} is achieved by minimizing the distancedependent term. Note that, strictly speaking, the transition only occurs in the $N \rightarrow \infty$ limit. In the white regime we lack an analytical form for the degree distribution.

Optimization model

$$
C_{i}=\min _{j}\left[\delta d_{i j}+h_{j}\right]
$$

Diameter and clustering coefficient

$$
D \sim \frac{\log N}{\log \log N}
$$

Bollobas, Riordan, 2002

Reminder: for a random graph we have:

$$
C_{\text {rand }}=\frac{<k>}{N} \sim N^{-1}
$$

What is the functional form of $\mathrm{C}(\mathrm{N})$?

$$
C=\frac{m}{8} \frac{(\ln N)^{2}}{N}
$$

Konstantin Klemm, Victor M. Eguiluz,
Growing scale-free networks with small-world behavior, Phys. Rev. E 65, 057102 (2002), cond-mat/0107607

CLUSTERING COEFFICIENT OF THE BA MODEL

$$
C=\frac{N r(\Delta)}{\frac{k(k-1)}{2}}
$$

$$
C=\frac{2}{6}
$$

Denote the probability to have a link between node i and j with $P(i, j)$ The probability that three nodes i, j, I form a triangle is $P(i, j) P(i, I) P(j, l)$

The expected number of triangles in which a node / with degree $k_{/}$participates is thus:

$$
N r_{l}(\Delta)=\int_{i=1}^{N} d i \int_{j=1}^{L} d j P(i, j) P(i, l) P(j, l)
$$

We need to calculate $P(i, j)$.

CLUSTERING COEFFICIENT OF THE BA MODEL

Calculate $\mathrm{P}(\mathrm{i}, \mathrm{j})$.

Node j arrives at time $t_{j}=j$ and the probability that it will link to node i with degree k_{i} already in the network is determined by preferential attachment:

$$
P(i, j)=m \Pi\left(k_{i}(j)\right)=m \frac{k_{i}(j)}{\sum_{l=1}^{j} k_{l}}=m \frac{k_{i}(j)}{2 m j}
$$

$$
k_{i}(t)=m\left(\frac{t}{t_{i}}\right)^{1 / 2}=m\left(\frac{j}{i}\right)^{1 / 2} \quad \begin{aligned}
& \text { Where we used that the arrival time of node } \quad \begin{array}{l}
j \text { is } t_{j}=j \text { and the arrival time of node is } t_{i}=i
\end{array} \quad P(i, j)=\frac{m}{2}(i j)^{-\frac{1}{2}}, ~
\end{aligned}
$$

$N r_{l}(\Delta)=\int_{i=1}^{T} d i \int_{j=1}^{Y} d j P(i, j) P(i, l) P(j, l)=\frac{m^{3}}{8} \int_{i=1}^{T} d i \int_{j=1}^{Y} d j(i j)^{-\frac{1}{2}}(i l)^{-\frac{1}{2}}(j l)^{-\frac{1}{2}}=\frac{m^{3}}{8 l} \int_{i=1} \frac{d i}{i} \int_{j=1}^{Y} \frac{d j}{j}=\frac{m^{3}}{8 l}(\ln N)^{2}$ $C=\frac{\frac{m^{3}}{8 l}(\ln N)^{2}}{k_{l}\left(k_{l}-1\right) / 2}$
$C=\frac{m}{8} \frac{(\ln N)^{2}}{N}$

$$
\begin{array}{ll}
k_{l}(t)=m\left(\frac{N}{l}\right)^{1 / 2} \text { Which is the degree of node } l & \text { Let us approximate: } \\
\text { at current time, at time } t=N & k_{l}\left(k_{l}-1\right) \approx k_{l}^{2}=m^{2} \frac{N}{l}
\end{array}
$$

